(资料图片)
IT之家 5 月 10 日消息,量子精密测量致力于把量子力学原理运用到各种测量任务中以实现超过经典极限的测量精度。海森堡极限被认为是利用量子方法和资源所能达到的最终极限。
中国科学技术大学郭光灿院士团队李传锋、陈耕等人与同行合作,利用量子不确定因果序实现了超越海森堡极限精度的量子精密测量。
科研人员表示,这一实验结果对不确定因果序和量子精密测量的理解均带来了重要影响。目前,相关研究成果已发表于国际期刊《自然・物理》。IT之家附 DOI:10.1038/s41567-023-02046-y。
▲ 量子不确定因果序的示意图。蓝色和红色路线经过两个门的时序不同且处于量子叠加态。图源:中国科学技术大学
近年来,学术界提出一种新的量子结构,即量子不确定因果序。量子力学的叠加原理不仅允许不同量子本征态之间的叠加,也允许两个事件处于两个相反时序的量子叠加上。这样一种新型的量子资源已经被证实可以在特定的量子计算和量子通信任务中提供优势,然而此前工作都是基于离散变量体系,未能直接应用于量子精密测量任务中。
对此,科研人员设计了一种全新的杂化(hybrid)量子装置,即用一个离散量子比特控制光子两组连续变量的演化时序,实验实现了不确定因果序,从而实现了对演化产生的几何相位的超海森堡极限的精密测量,即测量的不确定度 δA反比于独立演化过程的次数 N 的平方(δA∝1 / N2)。
实验结果表明,这种新方法在实验演示的范围内获得了对确定因果序方法理论上的最高测量精度,即海森堡极限(δA∝1 / N,图 2 中的蓝色虚线)的绝对优势,实验结果逼近了理论上的超海森堡极限(下图红色实线)。
▲ 实验的测量精度。黑色方点为 N 个独立演化过程的实验测量精度,红色实线为不确定因果序方法的超海森堡极限(δA=1 / N2),蓝色虚线为确定因果序方法的最高精度,即海森堡极限(δA=1 / N)。
据介绍,该实验使用单个光子作为探针,不存在光子间的相互作用,且单次测量所需要的能量不超过单个光子的能量,从而实现了首个在规范化资源定义下超越海森堡极限的实验工作。实验实现的相对于确定因果序方法的提升可以直接转化为在实际测量任务中的现实优势。该实验对不确定因果序和量子精密测量的理解均带来了重要影响。
标签:
上一篇: 环球热消息:迪庆移动护航虫草采挖季 目前已开通8个4G基站、12个4G小区
下一篇: 最后一页